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A B S T R A C T   

The COVID-19 pandemic has led to a globally unprecedented change in human mobility. Leveraging two-year 
bike-sharing trips from the largest bike-sharing program in Chicago, this study examines the spatiotemporal 
evolution of bike-sharing usage across the pandemic and compares it with other modes of transport. A set of 
generalized additive (mixed) models are fitted to identify relationships and delineate nonlinear temporal in-
teractions between station-level daily bike-sharing usage and various independent variables including socio- 
demographics, land use, transportation features, station characteristics, and COVID-19 infections. Results 
show: 1) the proportion of commuting trips is substantially lower during the pandemic; 2) the trend of bike- 
sharing usage follows an “increase-decrease-rebound” pattern; 3) bike-sharing presents as a more resilient op-
tion compared with transit, driving, and walking; 4) regions with more white, Asian, and fewer African-American 
residents are found to become less dependent on bike-sharing; 5) open space and residential areas exhibit less 
decrease and earlier start-to-recover time; 6) stations near the city center, with more docks, or located in high- 
income areas go from more increase before the pandemic to more decrease during the pandemic. Findings 
provide a timely understanding of bike-sharing usage changes and offer suggestions on how different stake-
holders should respond to this unprecedented crisis.   

1. Introduction 

Starting from late 2019, the novel Coronavirus disease 2019 (COVID- 
19) pandemic has spread rapidly across the world, deteriorating into one 
of the worst global health crises seen in decades. As of November 3rd, 
2020, the number of confirmed cases in the U.S. has surpassed over 9.34 
million, with the death toll surpassing 33,500 (CSSE, 2020). The 
outbreak of COVID-19 has posed unprecedented challenges for the 
government. Aside from medical measures, non-pharmaceutical in-
terventions like stay-at-home orders to restrict human movement have 
been widely adopted across the nation to contain the virus’s spread 
(Xiong et al., 2020b). In the U.S., stay-at-home orders were instituted 
across all but eight states by mid-April 2020, indicating at least 316 
million people were being urged to stay home, reduce unnecessary 
contact, and keep social distancing. 

Non-pharmaceutical interventions and the virus itself triggered 
dramatic changes in human mobility patterns, no matter walking, 

cycling, riding transit, driving alone, or carpooling. Although several 
studies have already reported the globally unprecedented decline in 
human movement (Bliss et al., 2020), rare studies have solely focused on 
cycling changes. Examining the change in cycling during the pandemic 
is in imperative need for several reasons. First, cycling is considered a 
more efficient and safer travel option to maintain social distancing 
during the epidemic, especially compared with riding transit and car-
pooling in crowded spaces and public environments. Therefore, in-
dividuals may shift from those high-risk modes to cycling to minimize 
the risk of infection (Nikiforiadis et al., 2020), leading to spatiotemporal 
cycling demand changes compared with regular periods (Bucsky, 2020). 
To better manage the supply-demand balance and effectively provide 
cycling services, local governments and cycling service providers should 
consider such changes in advance and rejudge the post-pandemic niches 
of cycling. Second, cycling’s socio-economic disparities have attracted 
various researchers’ attention for a long time (Campbell and Brakewood, 
2017; Caspi and Noland, 2019). For example, whether high-income 
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groups or low-income groups cycle more gained controversial opinions 
in prior studies (Caspi and Noland, 2019; Wang and Lindsey, 2019). 
During the pandemic, several reports have claimed that human mobility 
drops considerably less among uneducated, low-income, and people of 
color communities (Bliss et al., 2020; Brough et al., 2020; De Vos, 2020; 
Hu et al., 2021; Sy et al., 2020; Wilbur et al., 2020), suggesting the 
cycling’s socio-economic disparities may also exist or even polarize 
during the pandemic. The difference in bike-sharing usage among areas 
with different socio-economic backgrounds is worth exploring and can 
unveil inequalities in the impact of the pandemic on different population 
groups. 

Bike-sharing has been widely considered as a reliable source to study 
travel behavior regarding cycling. Information on cycling trips using 
private bikes are hard to collect; on the contrary, due to the General 
Bikeshare Feed Specification (GBFS), most dock-based bike-sharing 
systems in U.S. cities have made their transaction data available to the 
public. Moreover, bike-sharing systems have expanded rapidly over 
recent years and cover most of the population in many major cities, 
eliminating small-sample selection biases when studying cycling 
behavior. This study intends to examine the changes in cycling during 
the pandemic using the biggest bike-sharing program named Divvy in 
the city of Chicago as a case. Several research questions are proposed:  

1) How do the bike-sharing usage change spatiotemporally during the 
pandemic?  

2) Is bike-sharing a more resilient option compared with other modes of 
transport like driving, transit, and walking?  

3) What are the underlying disparities in the impact of COVID-19 on 
bike-sharing usage across regions with different land use, socio- 
economic features, transportation facilities, station characteristics, 
and COVID-19 infections?  

4) What are the nonlinear interactions between time and other regional 
components regarding bike-sharing usage? Namely, how do the re-
lationships established in 3) vary across the pandemic? 

To answer these questions, station-level average daily pickups and 
cumulative relative changes were analyzed. A detailed descriptive 
analysis was first conducted to document the spatiotemporal usage 
patterns of shared bikes. A comparison among different modes of 
transport including driving, transit, bike-sharing, and walking regarding 
their temporal evolution across the pandemic was also performed. 
Subsequently, three generalized additive models (GAMs) were 
employed to conduct cross-sectional analysis, using the regular (the year 
of 2019) average bike-sharing usage, the pandemic (the year of 2020) 
average bike-sharing usage, and the cumulative relative bike-sharing 
usage change (i.e., 2020 versus 2019) as dependent variables, respec-
tively. Finally, controlling for weather conditions, time-series season-
ality, and holiday effects, a set of generalized additive mixed models 
(GAMMs) were fitted to longitudinally analyze the nonlinear temporal 
interactions between various independent variables and bike-sharing 
usage change. 

Our analysis builds on previous work on human mobility changes 
during the pandemic by (1) focusing on the spatiotemporal usage pat-
terns of bike-sharing and comparing it with other modes of transport; (2) 
estimating the effects of various intrinsic (i.e. station characteristics) 
and extrinsic (i.e. land use, socio-economics, transportation facilities, 
infections, weather) factors to seek the roots of disparities in bike- 
sharing usage; (3) unraveling the differences in effects of aforemen-
tioned factors on bike-sharing usage between unperturbed periods and 
pandemic periods and (4) investigating the time-varying interaction 
effects over the course of the pandemic. Findings can help bike-sharing 
operators and local governments understand the demand change during 
the pandemic and inform the best practice that can adequately account 
for equity concerns when shared bikes and financial supports are 
allocated. 

2. Literature review 

2.1. Bike-sharing usage studies (during regular periods) 

Sufficient studies on bike-sharing usage have already been well- 
documented (Fishman, 2016). Among these studies, dependent vari-
ables, i.e., the bike-sharing pickups or returns, are aggregated in 
different spatial units (stations, TAZs, census block groups, cycling 
routes, or cities) and separated by temporal features (weekdays versus 
weekends, peak hours versus non-peak hours) or user groups (younger 
versus elder, low-income versus medium/high-income, member versus 
casual) (Caspi and Noland, 2019; Chen et al., 2018; Faghih-Imani et al., 
2014; Noland et al., 2016; Sun et al., 2018). Independent variables can 
be summarized as land use, socio-demographics, transit proximity, bi-
cycle infrastructure, and weather conditions (Faghih-Imani et al., 2014; 
Noland et al., 2016; Sun et al., 2018; Wang et al., 2016). 

Most prior findings are consistent. Areas with higher population 
density, more youngers, higher income, more cycling facilities, greater 
transit proximity, and better weather conditions are more likely to 
generate more cycling trips (Chen et al., 2017; Faghih-Imani et al., 2014; 
Noland et al., 2016; Shen et al., 2018). However, some controversial 
opinions are also proposed. For example, although most studies stated a 
complementary relationship between bike-sharing and transit (Noland 
et al., 2016), Campbell and Brakewood found a reduction in bus rider-
ship after introducing bike-sharing and thus they claimed the relation-
ship is substitutive rather than complementary (Campbell and 
Brakewood, 2017). 

Besides the analysis of shared bike usage, some studies focus on 
examining bike-sharing users, including users’ demographics, motiva-
tion, preference, and purpose. Several conclusions are consistent. For 
example, bike-sharing users are often younger, white males with higher 
education degrees and upper-to-middle income (Caspi and Noland, 
2019; Shaheen and Cohen, 2019). Casual users are more likely to ride for 
leisure, while members are found to ride more for commuting (Kaviti 
et al., 2019; McKenzie, 2019; Wang and Lindsey, 2019). Opposite 
opinions also exist. For example, a recent study concluded that after 
partialling out other exogenous factors, members residing in lower- 
income neighborhoods generate more bike-sharing trips (Wang and 
Lindsey, 2019). 

Various statistical methods are designed to model bike-sharing 
usage. Ordinary least squares (OLS) regression is not appropriate 
given the over-dispersion and non-normal nature of bike-sharing usage 
(Noland et al., 2016). The generalized regression models like Poisson 
regression, negative binomial model, and zero-inflated binomial model 
are widely used to address these problems (Faghih-Imani et al., 2014; 
Noland et al., 2016; Wang et al., 2016). Another common issue is the 
spatiotemporal autocorrelation when dealing with cross-sectional 
spatial data or longitudinal data. To control for this, several multi- 
level models combined with the autoregressive moving average 
(ARMA) or spatial additive terms are proposed (Caspi and Noland, 2019; 
Faghih-Imani et al., 2014; Hu et al., 2018; Noland et al., 2016; Sun et al., 
2018; Wang et al., 2020). Recently, the endogeneity bias regarding the 
station capacity and bike-sharing usage has also drawn some attention. 
The error component in modeling bike-sharing usage is considered 
correlated with the station capacity since service operators prefer to 
allocate more resources in denser urban areas (Faghih-Imani and Eluru, 
2016; Wang and Chen, 2020). To address this, structural equation 
modeling (for example, Two-Stage least squares (2SLS)) is introduced 
(Faghih-Imani and Eluru, 2016; Wang and Chen, 2020). 

2.2. Bike-sharing usage and human mobility analysis (during the 
pandemic) 

Mobility has proved to be a critical predicting factor of the spread of 
the COVID-19 pandemic. Mobility patterns are strongly correlated with 
decreased case growth rates (Badr et al., 2020; Xiong et al., 2020a). The 

S. Hu et al.                                                                                                                                                                                                                                       



Journal of Transport Geography 91 (2021) 102997

3

practice of social distancing can effectively reduce the infection rate of 
the disease. Therefore, most governments in affected areas have adopted 
lockdown and stay at home orders to mitigate the disease’s spread. 

Mobility flows have drastically reduced since the beginning of the 
COVID-19 pandemic (Badr et al., 2020; Hu et al., 2021; Xiong et al., 
2020b). The magnitudes of drop, however, are not uniformly distributed 
for all modes of transport. Bike-sharing is proved to be a more resilient 
mode. In New York City, while the subway system had a rider drop of 

90%, the bike-sharing system had a less 71% decrease and showed a 
faster rebound rate (Teixeira and Lopes, 2020). In Budapest, Hungary, 
COVID-19 decreased mobility by half, public transport experienced the 
most striking reduction of 80%, while cycling and bike-sharing saw the 
lowest decrease of 23% and 2%, respectively (Bucsky, 2020). The study 
done in Thessaloniki, Greece, suggests that COVID-19 will not markedly 
influence the number of bike-sharing users (Nikiforiadis et al., 2020). 
The main reason is that people consider bike-sharing as a safer mode to 

Fig. 1. Time series of bike-sharing pickups in Chicago. (a) From June 27th, 2013 to July 31st, 2020; (b) From February 1st, 2020 to July 31st, 2020.  
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limit contact during the pandemic. In the city of Chicago, by using a 
stated preference-revealed preference (SPRP) survey, Shamshiripour 
(Shamshiripour et al., 2020) found that transit, taxi, and ride-hailing 
services are the highest risky modes of transportation in resident’s 
view. As a result, they might shift from ridesharing and public transit to 
modes that limit contact—such as walking, biking, and driving alone. 

Also, concerns are rising about the economic consequences of lock-
down policies and the potential disproportionate effect on populations 
with lower socioeconomic status (Hu et al., 2021). Bonaccorsi et al. 
(Bonaccorsi et al., 2020) have found that lockdown measures have a 
more substantial impact in areas with higher fiscal capacity, and 
mobility contraction in mobility is more salient in areas with more in-
equalities and lower incomes. Using New York City Citi Bike data, Pase 
et al. (Pase et al., 2020) found that wealthier neighborhood in Man-
hattan was more able to socially distance than more impoverished areas 
with a high number of essential low-wage workers. They also advocated 
for policies that help create a safer environment for cyclists because 
bike-sharing, in general, can provide a flexible and environmentally 
substantial alternative for shorter transportations as users are concerned 
about the risk of infection from the return to mass transit. In Beijing, 
China, share bike usage data showed a 60% decrease in mobility 
compared to the same period in 2019, with city centers being the most 
impacted area during and shortly after the pandemic (Chai et al., 2020). 

3. Research design 

3.1. Study area and background 

The Divvy bike-sharing in the City of Chicago is chosen for empirical 
analysis. It is among the largest bike-sharing systems in the U.S. 
regarding the number of stations, bicycles, users, and transactions. As of 
July 2019, Divvy operated over 5800 bicycles at 608 stations, gener-
ating over 1,773,622 trips in 2019 (Wisniewski, 2019). The time series 
of daily pickups are visualized in Fig. 1. A rising trend is visible across 
recent years (Fig. 1 (a)). During the COVID-19, a precipitous fall in bike- 
sharing usage occurred in mid-March and reached its lowest in April; 
after that, the usage rebounded and gradually recovered to the near- 
regular status (Fig. 1 (b)). The monthly total numbers of pickups in 
2019 and 2020 are also documented in Table 1. 

Another reason to study the Divvy is due to the unprecedented 
outbreak of the COVID-19 pandemic in Chicago. Chicago was among the 
first U.S. cities significantly affected by the pandemic. On January 24th, 
2020, the City of Chicago announced the first and the second confirmed 
cases in the U.S. The number of positive cases spiked exponentially since 
March 2020 (Fig. 1 (b), the bar plot). By May 1st, 2020, the number of 
positive cases in Cook County, Illinois, reached 1633 per day for a cu-
mulative total of 36,513 (CSSE, 2020). At that time, Cook County had 
the second-highest number of confirmed cases across the nation only 
after New York County. On March 13th, 2020, the state government is-
sued an emergency order to constrain inessential travel by closing all 
schools, bars, restaurants and restricting large gatherings to contain the 
virus’s spread. As the virus spread further, the state enacted a more 
stringent stay-at-home order, enforcing fines and possible jail time. At 
firstly declared between March 21st and April 7th, the order was later 

extended until April 30th, then May 29th. 

3.2. Data and variables of interest 

3.2.1. Dependent variables 
Three dependent variables were considered in this study, including 

station-level average daily pickups from March 11st, 2019 to July 31st, 
2019, station-level daily average pickups from March 11st, 2020 to July 
31st, 2020, and station-level cumulative relative change from February 
1st, 2020 to July 31st, 2020. We chose March 11st, 2020 as the beginning 
day of the COVID-19 pandemic as it is when WHO officially claims the 
COVID-19 as a pandemic. When studying the relative change, we started 
on February 1st, 2020. We want to include some pre-pandemic periods to 
better understand the change from pre-pandemic periods to post- 
pandemic periods. It is also worth noting we employed cumulative 
change rather than pointwise change is to eliminate the high random-
ness in daily fluctuation and smooth the time-series across the 
pandemic: 

ϕ(j)
n:m =

1
m − n

∑m

t=n

y(j)t − ỹ(j)t
ỹ(j)t

(1)  

where ϕ(j)
n:m is the cumulative relative change from day n to day m of 

station j; yt
(j) is the daily average pickups at station j in day t during 2020; 

ỹ(j)t is the daily average pickups at station j in day t during 2019. In this 

study, we calculate the cumulative relative change (ϕ(j)
n:m) from January 

1st, 2020 but only included the data after February 1st, 2020 in the final 
analysis as the initial time-series is not stationary. This is because when 
m − n is small, the cumulative relative change is approximate to the 
pointwise relative change. 

Based on these variables, four models were built, including three 
cross-sectional models and a longitudinal model (see Table 2 for a 
summary). To better clarify the calculation of cumulative relative 
change as well as to clearly describe the overall temporal trends, the 
monthly total pickups and the corresponding cumulative relative 
changes are reported in Table 1. All dependent variables can be directly 
calculated using trip records downloaded from Divvy official website. 
For each trip, available information includes start and end timestamp, 
start and end station, and user types (casual or member). Several rules 
were then applied to filter out the outliers from the raw trip dataset. 
First, only trips with durations from 1 min to 6 h were kept, as trips with 
too short and too long duration may be due to data transmission error or 
abnormal travel. Then, stations with no trip generated during 2020 were 
dropped as those stations maybe be closed in 2020. Finally, stations with 
significantly lower trip generation but higher relative change 
(Threshold: the pointwise relative change is greater than 1000% while 
daily trips are lower than or equal to 2) were excluded. After applying 
these rules, 6.19% of trips were excluded from the final models. 

The time-series of station-level cumulative relative change since 
February 1st, 2020 are shown in Fig. 2. Each transparent gray curve 
tracks one station’s change, and the red and blue curves mark the mean 
and median of changes across all stations. Based on the time-varying 
patterns, we can divide the timeline into several parts as follows:  

1) Period I (Regular period): the average bike-sharing pickup is greater 
in 2020 than in 2019. This could be due to the higher average tem-
perature in January 2020 (0 ◦C) than in 2019 (− 5 ◦C), and the 
growing popularity of bike-sharing in Chicago over recent years.  

2) Period II (Pre-pandemic period): a slight increase is captured around 
March 11st, 2020. Again, this increase may be due to the higher 
average temperature in March 2020 (5 ◦C) than in 2019 (2 ◦C), and 
the pre-pandemic panic such that people were seeking alternative 
low-risk travel modes for the forthcoming lockdown.  

3) Period III (During the pandemic): A sharp decrease occurs between 
March 11st, 2020 and June 5th, 2020 (the day when the local 

Table 1 
Monthly total pickups and corresponding cumulative relative change.  

Month Pickups in 
2020 

Pickups in 
2019 

Cumulative 
change 

Cumulative relative 
change 

1 140,653 102,461 38,192 0.373 
2 132,017 95,357 74,852 0.378 
3 136,729 164,328 47,253 0.130 
4 81,754 263,107 − 134,100 − 0.214 
5 192,751 364,477 − 305,826 − 0.309 
6 330,603 472,144 − 447,367 − 0.306 
7 530,772 553,723 − 470,318 − 0.233  
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government lifts stay-at-home order in Chicago), which can be 
explained by the stay-at-home restriction and the virus’s threat.  

4) Period IV (Mobility rebound): After June 5th, 2020, a slow rebound is 
observed. As of July 31st, 2020, the cumulative trips have almost 
recovered to regular status. 

3.2.2. Independent variables and control variables 
Independent variables include land use, socio-demographics, 

COVID-19 related features, transportation features, and station charac-
teristics. When conducting longitudinal analysis, we further controlled 
for temporal variables, including weather conditions and temporal 
seasonality, by incorporating the effects of precipitation, temperature, 
weekly and monthly patterns, and holidays into the models (see Table 2 
for a summary). Data sources of the independent variables are listed as 
follows: land use from the Chicago Metropolitan Agency for Planning 
(CMAP); census block group level socio-demographic features from the 

Table 2 
Summary of variables.   

Description Model Mean St.d. Min. Max. 

Dependent Variable 
Average Daily Pickups (2019) The station-level daily average number of pickups from 

March 11st, 2019 to July 31st, 2019 
I 25.522 28.072 0.519 229.333 

Average Daily Pickups (2020) The station-level daily average number of pickups from 
March 11st, 2020 to July 31st, 2020 

II 16.376 14.584 0.453 80.310 

Cumulative relative change (By July 31st, 2020) Station-level cumulative relative change by July 31st, 2020 III − 0.054 0.382 − 0.742 1.990 
Cumulative relative change (Across the pandemic) Station-level cumulative relative change from February 1st, 

2020 to July 31st, 2020 
IV 0.095 0.463 − 0.799 2.977  

Independent Variable 
Socio-demographic (Census 

block group level) 
Prop. of Male The proportion of males I - IV 0.497 0.069 0.306 0.712 
Prop. of Age_25_40 The proportion of people aged between 25 and 40 I - IV 0.375 0.154 0.000 0.706 
Prop. of Age_40_65 The proportion of people aged between 40 and 65 – 0.258 0.090 0.016 0.842 
Prop. of White The proportion of White I - IV 0.642 0.242 0.000 1.000 
Prop. of Black The proportion of Black IV 0.156 0.233 0.000 1.000 
Prop. of Asian The proportion of Asian I - IV 0.120 0.132 0.000 0.949 
Median Income The median household income, in $103/household. I - IV 86.660 40.988 12.661 214.659 
Prop. of College Degree The proportion of people with education attainment equal 

to/higher than college 
I - IV 0.640 0.243 0.000 1.000 

Prop. of Car The proportion of people commuting with private cars I - IV 0.408 0.166 0.000 0.828 
Prop. of Transit The proportion of people commuting by transit IV 0.321 0.147 0.000 0.902 
Prop. of Walk Bike The proportion of people commuting by walk or bike – 0.177 0.161 0.000 0.643 
Prop. of Goods & 
Product Jobs 

The proportion of jobs in goods and producing sectors I - IV 0.077 0.163 0.000 1.000 

Prop. of Utilities Jobs The proportion of jobs in trade, transportation, and utility 
sectors 

I - IV 0.146 0.216 0.000 1.000 

Population Density Population density, in 103 persons/sq. mile I - IV 21.334 19.280 0.000 175.319 
Job Density Job density, in 103 jobs/sq. mile I - IV 2.141 5.405 0.005 38.510 

COVID-19 features (ZIP code 
level) 

No. of Cases The number of cumulative COVID-19 cases, in 103 I - IV 0.382 0.268 0.000 1.704 
Infection Rate The infection rate of COVID-19 (cumulative COVID-19 cases/ 

population) 
– 0.007 0.004 0.000 0.020 

Land use (500 m buffer level) Prop. of Commercial The proportion of commercial land I - IV 0.132 0.105 0.000 0.564 
Prop. of Industrial The proportion of industrial land I - IV 0.032 0.064 0.000 0.449 
Prop. of Institutional The proportion of institutional land I - IV 0.086 0.112 0.000 0.860 
Prop. of Open space The proportion of open space land I - IV 0.068 0.137 0.000 0.891 
Prop. of Residential The proportion of residential land I - IV 0.296 0.158 0.000 0.613 

Transportation features (500 
m buffer level) 

Road Density Road density, in mile/sq. mile, including arterial roads, 
secondary roads, and minor roads 

I - IV 54.082 16.660 18.778 113.748 

Bike Route Density Bike route density, in mile/sq. mile I - IV 3.876 2.356 0.000 11.789 
Transit Ridership Daily average transit ridership, in 103, including bus 

alighting, boarding, and rail system (“L” system) rides 
I - IV 12.798 21.238 0.000 138.883 

No. of Nearby Rail 
Stations 

The number of nearby rail stations – 0.868 1.597 0.000 11.000 

No. of Nearby Bus stops The number of nearby bus stops IV 22.622 10.718 0.000 61.000 
Station characteristics (Station 

Level) 
Capacity The number of docks in the bike-sharing station I - IV 18.857 7.797 0.000 55.000 
The capacity of Nearby 
Bike Stations 

The total number of docks in nearby bike-sharing stations – 60.499 77.988 0.000 379.000 

Distance to Nearest 
Bike Station 

The distance to the nearest bike-sharing station, in miles I - IV 0.249 0.114 0.032 0.856 

Distance to City Center The distance to the city center, in mile IV 4.153 2.509 0.000 13.039  

Control Variable 
Temporal seasonality Month Month, from 1 (January) to 12 (December) IV – – 2.000 7.000 

Week Day of the week, from 0 (Monday) to 6 (Sunday) IV – – 0.000 6.000 
Is Holiday If the day is a holiday, 1; else 0. IV – – 0.000 1.000 
Time Index The difference in the day from the current date to March 11st, 

2020 
IV – – 0.000 141.000 

Weather condition Precipitation Daily precipitation, in mm IV 3.540 9.191 0.000 74.088 
Max. Temperature Daily maximum temperature, in Celsius IV 17.761 10.773 − 9.525 35.367 
∆ Precipitation Difference between daily precipitation in 2019 and on the 

same day of 2020, in mm 
IV − 0.525 11.508 − 51.352 71.024 

∆ Max. Temperature Difference between daily maximum temperature in 2019 and 
on the same day of 2020, in Celsius 

IV 1.270 6.300 − 18.640 18.500 

Note: Models I, II, III refer to the cross-sectional models using the regular (2019) average bike-sharing usage, the pandemic (2020) average bike-sharing usage, and the 
cumulative relative bike-sharing usage change (i.e., 2020 versus 2019) as the dependent variables respectively. Model IV refers to the longitudinal model. 
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2018 American Community Survey (ACS) 5-year estimates; zip-code 
level counted COVID-19 positive cases and station level transportation 
features from Chicago Data Portal; employment information from the 
LEHD Origin-Destination Employment Statistics (LODES) datasets; and 
weather conditions from the National Climatic Data Center (NCDC). 

All spatial variables were calculated based on the station service area 
but were collected in different spatial units like zip codes and census 
block groups. These variables were distributed to station service areas 
weighted by the share of each zipcode or block-group area with the 
station service area (Noland et al., 2016). The service area of each bike- 
sharing station is defined by a cycle with a 500-m radius. The underlying 
assumption is that people only walk for a 500-m distance to access a 
shared bike. Otherwise, people may choose alternative modes. Similar 
distances have been used in previous studies (Wang and Chen, 2020). To 
the concern of Modifiable Area Unit Problem (MAUP), we also tested 
different radiuses varying from 0.3 km to 1 km with a step of 100 m and 
found models present consistent performances. 

Variable selection was performed to determine the optimal variable 
set. The variance inflation factor (VIF) was first calculated to test the 
multicollinearity, and VIFs greater than five were excluded. Then, 
stepwise regression was employed to help select the independent vari-
ables based on the smallest AIC. Variables in the Italic text in Table 2 
were excluded from the models, either because of the high multi-
collinearity with other variables or the low capability in explaining the 
dependent variables. It is worth mentioning the VIF test and stepwise 
selection does not yield the same optimal variable set for all four models. 
Thus, it is possible that some variables are excluded from some models 
but still retain in other models. 

An important caveat here is that most of our independent variables 
were deduced on an aggregate (census block group or zip code) level in 
the absence of available information on the individual (Divvy user) 
level. As such, conclusions drawn from this study should not be 
extrapolated to individuals considering the possibility of an ecological 
fallacy. Although there is currently no way to overcome such problems 

that are inherent to all statistical inferences using aggregated data, our 
findings could help policy evaluation and intervention which are often 
targeted at an aggregate (i.e. community, county, or state) level. 

3.3. Methodology 

3.3.1. Cross-sectional analysis using the generalized additive model (GAM) 
The generalized additive model (GAM) (Wood, 2003) was employed 

to construct statistical inference. GAM (Wood, 2003) is a semi- 
parametric model with a linear predictor involving a series of additive 
non-parametric smooth splines of covariates. Compared to the ordinary 
least squares (OLS) linear regression, GAM is more flexible with fewer 
assumptions, which is useful when data fail to meet OLS assumptions, 
such as normality and homogeneity. Additionally, a noticeable advan-
tage of GAM lies in its capability and flexibility to handle different 
nonlinear effects (Wood, 2003). By changing spline functions, various 
nonlinear effects can be fitted under one framework, such as random 
effects, nonlinear interactions, and spatiotemporal autocorrelations (Hu 
et al., 2018; Wang et al., 2020). 

When conducting cross-sectional analysis on bike-sharing usage, the 
over-dispersion and the spatial autocorrelation are two main issues that 
need the GAM to address (Noland et al., 2016). Similar to prior studies 
(Noland et al., 2016; Wang et al., 2016), we assume bike-sharing pickups 
follow a count-based negative binomial (NB) distribution. NB distribu-
tion introduces an additional free parameter to relax the assumption that 
expectation and variance are equal. Besides NB distribution, we also 
tested other distributions such as normal distribution and Poisson dis-
tribution. GAMs under the NB distributions present the lowest AIC, 
indicating the NB distribution fits data best. An additive term to capture 
the spatial coordinate interaction is also attached (Wood, 2017). The 
final formulation of three GAMs are as follows: 

Y (1)̃NB
(

μ1μ1 +
μ1

2

k1

)

, Y(2)̃NB
(

μ2μ2 +
μ2

2

k2

)

,Y (3)̃N
(
μ3σ3

2) (2) 

Fig. 2. Station-level cumulative relative change during COVID-19.  
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g(r)
(
Yi(r)

)
= β0

(r) +
∑M

m=1
βm

(r)Xm,i + S̃i + ϑi(r) (3)  

where Y(1), Y(2), Y(3) are station-level average daily pickups from March 
11st, 2019 to July 31st, 2019, station-level daily average pickups from 
March 11st, 2020 to July 31st, 2020, and station-level cumulative rela-
tive change by July 31st, 2020, respectively; μ1, μ2, μ3 are the mean of 
Y(1), Y(2), Y(3); k1, k2 are the corresponding dispersion parameters, and σ3 
is the standard deviation; g(r)(.) is the link function of the rth dependent 
variable Y(r), where r = 1, 2, 3; when Y(r) follows the NB distribution, 
g(r)(.) is a logarithmic link and when Y(r) follows the normal distribution, 
g(r)(.) is an identity link; β0

(r) is the overall intercept for the rth dependent 
variable; βm

(r) is the mth coefficient of the mth independent variables Xm, 
and M is the number of independent variables; S̃i is the spatial coordi-
nate interaction of station i; ϑi

(r) is the error term. 

3.3.2. Longitudinal analysis using the generalized additive mixed model 
(GAMM) 

We further developed a set of longitudinal models to analyze the 
nonlinear temporal interactions among different independent variables 
and cumulative relative change in bike-sharing usage. As a longitudinal 
analysis with repeated observations overtime at each station, the non- 
independence among repeated observations and the heterogeneous 
temporal variability should be addressed. Multi-level (also named 
mixed) models are widely used to handle the panel data (Wolfinger and 
O’connell, 1993). However, traditional mixed models are linear based 
and cannot obtain high performance under data with significant 
nonlinear nature. Hence, a generalized additive mixed model (GAMM) 
structure was involved, with several additive smooth terms besides the 
linear fixed effect to address the heterogeneous covariance structures. 
To specific, the additive terms in this study include (Wood, 2017): 

1) Nonlinear random effects across all stations to capture the unob-
served heterogeneity.  

2) Temporal seasonality, including weekly and monthly patterns.  
3) Autoregressive term to address temporal autocorrelations in 

residual.  
4) Spatial interactions to address spatial autocorrelations in residual. 

Besides the above additive terms, an interaction term between the 
independent variable of interest and time index was included to explore 
the nonlinear interaction, controlling for other factors like weather, 
seasonality, holidays, and other variables with linear fixed effects: 

g
(
Yi,t

)
= β0 +

∑K

k=1
βkFk,i,t +

∑L

l=1
fl
(
Nl,i,t

)
+ f̃ T

(
Xi,t × Ti,t

)
+ S̃i + R̃i + ARi,t,P

+ ϑi,t
(4)  

ARi,t,P : Yi,t = ci +
∑P

p=1
φi,pYi,t− p + εi,t (5) 

where Yi, t is the cumulative relative change in station i on day t; g(.) 
is the link function, here we use the identity links assuming the cumu-
lative relative change follow a normal distribution; β0 is the overall 
intercept; βk is the kth coefficient of fixed effects; K is the total number of 
fixed effects; Fk, i, t refers to the kth fixed control variable in station i on 
day t, including weather conditions, holidays, and other variables except 
for Xi; L is the total number of control variables that present nonlinear 
relationships; fl(.) is a low rank isotropic smooth function and Nl, i, t 
denotes the lth control variable with nonlinear effects, here Nl, i, t in-
cludes all the temporal seasonality; Xi, t is the independent variable 
nonlinearly interplaying with the time index Ti, t in station i on day t; f̃T(

) is the smooth interaction functions; S̃i is the spatial coordinate 

interaction term of station i to capture the spatial autocorrelation; R̃i is 
the random effect of station i fitted by the spline function penalized by 
ridge penalty; ϑi, t is the error term; ARi, t, P is an autoregressive term for 
station i with order P (here P = 1), with expression shown in Eq. (5): 
where ci is the intercept; φi, t is the coefficient of the pth lagged Yi, t; εi, t is 
the white-noise. 

The estimation of GAMM is implemented in “mgcv” package using R 
(Wood, 2017). The variance components are estimated by the fast- 
Restricted Maximum Likelihood Estimation computation (fREML). To 
speed up the estimation process, this study employed an approach based 
on the discretization of covariate values and C code level parallelization 
(Li and Wood, 2020). When fitting model covariates, it takes only a 
discrete set of values substantially smaller than the sample size, which 
can reduce the computing time by two to three orders with very few 
approximation errors. 

4. Results 

4.1. Descriptive analysis 

This section reports the descriptive analysis of the bike-sharing trips. 
For each year, trips generated between March 3rd and July 31st were 
compared and reported in Table 3. Compared with 2019, a 32.35% drop 
in the total number of trips is observed during the pandemic. The 
components of trips in terms of user types have also considerably 
altered. The proportion of trips generated by members decreased from 
75.04% in 2019 to 56.24% in 2020. Considering members ride more for 
commuting while casuals ride more for leisure (Kaviti et al., 2019; 
McKenzie, 2019; Wang and Lindsey, 2019), it is reasonable that mem-
bers suffer the most striking drop due to the work-from-home policies. 
Another interesting finding is that the average trip duration and trip 
distance both increased during the pandemic. A similar phenomenon is 
found in China, where commuters have also been using shared bikes for 
longer rides as the data demonstrates that trips longer than 3 km have 
doubled since the pandemic (Wenyan, 2020). We argue such changes 

Table 3 
Description of bike-sharing trips.  

Trip features  

Period Total Casual 
ratio 

Member 
ratio 

Number of trips 2019 1,773,622 24.96% 75.04% 
2020 1,199,923 43.76% 56.24%  
Year Mean St.d. Median 

Trip duration (minute) 2019 19.493 23.063 12.650 
2020 27.125 31.286 17.933 

Trip Haversine distance (mile) a 2019 1.382 1.192 1.019 
2020 1.398 1.255 1.096  

Network features b  

Year Value 
Self-loops ratio 2019 4.58% 

2020 12.69% 
Diameter (Weighted by 

Haversine distance) 
2019 23.704 
2020 24.769 

Clustering coefficient 2019 0.696 
2020 0.677 

Number of communities 
(Infomap, weighted by the 
number of trips) 

2019 17 
2020 11 

Note: a) 2019 means March 3rd, 2019 to July 31st, 2019; 2020 means March 3rd, 
2020 to July 31st, 2020. b) Since Divvy does not report the network trip dis-
tances, we calculated the Haversine distance between trip start and end station. 
c) Diameter of a graph means the length of the longest geodesic. The clustering 
coefficient (also called transitivity) is the probability that the adjacent vertices of 
a vertex (i.e., station) are connected (i.e., at least one trip is generated). The 
number of communities is calculated based on the Infomap algorithm (Rosvall 
et al., 2009). All network features are calculated using the package “igraph” 
(Csardi and Nepusz, 2006). 
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are due to the increase in the proportion of trips for exercise and leisure. 
These trips are more likely to have longer durations and longer distances 
compared with commuting trips. 

Fig. 3 presents the temporal patterns of pickups. Daily profile in 2019 
presents a two-peak “commuting” pattern, while it changes to a one- 
peak “leisure” pattern in 2020. Also, weekly profile shifts from “week-
days more popular” in 2019 to “weekends more popular” in 2020. These 
changes further support the argument that the proportion of commuting 
trips has declined during the pandemic while the proportion of exercise/ 
leisure trips has increased. 

We further compared network features by constructing the bike- 
sharing trip flow network as a directed graph weighted by trip volume 
between each station pair (summarized in Table 3). The self-loops ratio 
(i.e., the round-trip ratio) increases from 4.58% in 2019 to 12.69% in 
2020. It is plausible since round trips are always considered as leisure 
trips (Noland et al., 2016). Also, a slight increase in the graph’s diameter 
and a decrease in the clustering coefficient in 2020 were observed, 
indicating the spatial network structure of bike-sharing trip flow be-
comes sparser and less compact during the pandemic. 

We sequentially conducted the community detection based on the 
Infomap algorithm, a popular community finding method designed 
particularly for the directed weighted graph to minimize the expected 
description length of a random walker trajectory in the graph (Rosvall 
et al., 2009). The purpose of community detection is to divide the 
network into clusters (i.e., communities) of nodes (i.e., bike-sharing 
stations) with dense connections internally and sparser connections 
between clusters. Results are geographically mapped in Fig. 4, with each 
color presenting one community. We found the number of communities 
decreases from 17 in 2019 to 11 in 2020, indicating the pandemic 
dramatically curtailed the strength of connection and contracted the 
complexity of the bike-sharing network structure. People may also ride 
longer to reach farther stations for exercise and cancel many short- 
distance stroll-around trips, which further weakens travel connections 
with nearby stations and flattens the network structure. 

The spatial distributions of the first two dependent variables in 
Table 2 are shown in Fig. 4. The size of points varies by the value of 
average pickups, while the color varies by the type of communities 
derived from the Infomap algorithm. The number of trips suffers an 
apparent shrinkage in 2020, and the community structure also presents 
striking change. From a spatial perspective, stations located around the 
city center show the most drastic change. In 2019, more than six 
different communities are surrounding the city center; but it shrinks to 
only one community in 2020. This shrinkage indicates such area pre-
sents the most complicated trip connections during regular periods. 

However, due to the pandemic, the connections are substantially 
weakened, rendering the converge and degradation of network 
structure. 

The spatial distributions of cumulative relative change by July 31st, 
2020 (i.e., the third dependent variable in Table 2) are shown in Fig. 5. 
We split the changes by the signs of their values and plot their absolute 
values separately. Therefore, in each subfigure, a larger spot represents a 
greater change. The small black circulars in each subfigure are those 
with opposite signs. We found that stations with positive cumulative 
changes are mostly distributed in the suburbs. At the same time, those 
suffering greater usage decreases are mainly located near the city center. 
Such finding further confirms the spatial heterogeneity in relative 
change of bike-sharing usage and necessitates the examination of factors 
related to such heterogeneity. 

4.2. Comparison with other modes of transport 

Although human movement curtailed substantially during the 
pandemic, the scales of decline across different modes of transport were 
not uniform. Of particular interest is to compare the bike-sharing with 
other modes like driving, walking, transit, and total human travel to see 
whether bike-sharing is more resilient or not. To achieve this, different 
data sources besides the Divvy were leveraged, including the Apple 
Mobility (Apple, 2020), which is currently the only public data source 
providing the COVID-19 mobility trend broken down by different modes 
of transport; and the SafeGraph Social Distancing Metrics (SafeGraph, 
2020), which provides the overall human movement statistics derived 
from deidentified large-scale mobile phone data. More concretely, Apple 
Mobility approximates human mobility by the number of daily requests 
for directions from Apple Maps users. SafeGraph aggregates location- 
based service (LBS) data from over 45 million mobile devices and 
measures the frequency of visits of over 4.4 million Point-of-Interests 
(POIs) in the U.S. All data were collected from anonymized users who 
have opted-in with complete anonymity regarding their identity and 
personal details to provide access to their location data. In this study, 
only movements located in Cook County, Illinois, were retrieved. The 
temporal evolution was visualized in Fig. 6 and the monthly average 
relative volume was documented in Table 4. It should be noted that 
Apple Mobility only provides the relative volume compared to the 
baseline volume on January 13th, 2020. To comply with that, all other 
data including SafeGraph POI visits and Divvy trips were standardized 
by dividing daily volume by the corresponding volume on January 13th, 
2020. 

The overall mobility evolution trends across different modes are 

Fig. 3. Temporal patterns of Divvy bike-sharing pickups. (a) Hourly total trips; (b) Weekly total trips from 0 (Monday) to 6 (Sunday).  
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similar. All types of mobility plummeted steeply around mid-March, 
reached their nadirs in April, and afterwards steadily rebounded till 
the end of the observation period. Pronounced differences are visible 
regarding the degree of decline and speed of recovery. Transit suffers the 
most severe hit, losing the greatest percentage of trips (changing to 
21.3% of baseline by April) and recovering at the slowest speed 
(reaching 45.8% of baseline by July). Bike-sharing, on the contrary, 
exhibits the fastest rebound speed and greatest rebound scale, with the 
total number of trips increasing to 284.0% of the baseline by the end of 
July. Driving and walking present similar patterns, recovering at a speed 
lower than bike-sharing and reaching 137.5% and 131.6% of the base-
line respectively by July. The total number of travels exhibits the 

average pattern of all modes, rebounding at a moderate speed and 
recovering to 82.5% of the baseline by the end of observation period. 

Although bike-sharing displays the most resilient and robust trend, 
which also dovetails with previous studies (Bucsky, 2020; Teixeira and 
Lopes, 2020), it would be inappropriate at this stage to infer that bike- 
sharing has the ability to substitute other more vulnerable options like 
transit during the pandemic. Some other reasons may also account for 
this distinctive rebound trend of bike-sharing. First, cycling is more 
sensitive to temperature and its intrinsic growing trend is typically 
steeper when moving through winter to summer compared with other 
modes (the 2019 temporal trend in Fig. 1 (b) can stand as evidence). If 
the pickups on the same day of 2019 are used as baseline, the curve of 

Fig. 4. Spatial patterns of Divvy bike-sharing pickups. (a) Average daily pickups from March 11st, 2019 to July 31st, 2019; (b) Average daily pickups from March 11st, 
2020 to July 31st, 2020. 
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relative bike-sharing mobility ratio would be flattened. Second, the total 
number of trips generated by Divvy users is largely constrained by the 
total number of available devices like shared bikes, docks, and stations. 
Hence, the continuous system expansion of Divvy itself also contributes 
to the high rebound rate. Nonetheless, motivated by the trend we can 
document that bike-sharing serves as a more important option during 
the pandemic potentially due to its high health benefit and low risk of 
contagion. Policymakers could think about how to provide safer services 
like bike-sharing to help maintain connectivity between communities 
that are seeing sustained flows during the crisis. 

4.3. Inferential analysis of cross-sectional models 

The results of three cross-sectional GAMs are reported in Table 5. The 
same independent variables are used in all three models, with the 
addition of the number of COVID-19 cases in model II and Model III. 
Goodness-of-fit indexes (adjusted R2) are 0.527, 0.610, and 0.400 for the 
three models, respectively, indicating that the GAMs fitted the data well. 
The goodness-of-fit for Model III is worse than the other two models, 
which may because the cumulative relative changes are more fluctuated 
and harder to capture. Two parts are included in the results: the para-
metric coefficients, corresponding to the linear fixed effects, and the 
non-parametric smooth terms, corresponding to the nonlinear effects. 

Fig. 5. Spatial patterns of Cumulative relative changes by July 31st, 2020. (a) Cumulative relative changes with positive values; (b) Absolute of cumulative relative 
changes with negative values. 
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Only spatial interaction is included in the nonlinear term, and two of 
them (i.e., Model I and II) are statistically significant. The insignificant 
sign of the spatial interaction in Model III indicates that the spatial 
distribution of relative changes is more randomized than average 
pickups. 

The reason for fitting the three models is to comprehensively un-
derstand the differences and similarities regarding bike-sharing usage 
determinants during regular and pandemic periods. Specifically, Model I 
and II uncover what factors significantly correlate with the absolute bike- 
sharing usage during regular and pandemic periods, while Model III 
directly examines what factors contribute to the relative change in bike- 
sharing usage triggered by the pandemic. By comparing coefficients in 
the three models, three questions can be answered: 1) which region 
prefers to riding shared bikes during unperturbed periods; 2) which 
region continues generating shared bikes trips during the pandemic and 
3) which region suffers the greatest relative change in riding shared 
bikes during the pandemic. 

Regarding socio-demographics, the proportion of white and 
educated residents and the population density all present significant 
positive signs in Model I and Model II, while the proportion of 
commuting with private cars present significant negative signs. These 

indicate that regardless of the pandemic, bike-sharing is always more 
popular among regions with more white and educated residents, higher 
population density, and fewer commuters driving private cars. Such 
findings are highly consistent with various previous studies (Caspi and 
Noland, 2019; Fishman, 2016; Shaheen and Cohen, 2019). The median 
household income, on the contrary, presents a slightly significant posi-
tive sign in Model I, but changes to insignificant in Model II. This implies 
that regions with higher income generates more bike-sharing trips 
during regular periods, but not during the paramedic. Such arguments 
are further confirmed by Model III, which shows the proportion of white 
and Asian residents and the median household income present signifi-
cant negative relationships. Alternatively, regions with higher income and 
more white and Asian residents suffer a more significant relative decrease in 
bike-sharing trips during the pandemic. This finding is in line with various 
prior studies regarding the human mobility changes during COVID-19, 
which claims that lower-income and colored workforce experienced 
the least change in travel behavior (Bliss et al., 2020; Brough et al., 
2020; De Vos, 2020; Hu et al., 2021; Pase et al., 2020; Sy et al., 2020; 
Wilbur et al., 2020). We argue the main reason may because “essential” 
workers are mostly non-white, poorly-paid, and required to travel to 
their workplaces regardless of the stay-at-home orders (Bliss et al., 2020; 
Wilbur et al., 2020). Besides, lower car ownership, lower awareness of 
virus risks, and less flexibility to change to other modes may be other 
potential reasons (Brough et al., 2020). 

As for land use, the proportion of industrial lands present significant 
negative relationships in both Model I and II, while the proportion of 
open space presents significant positive relationships. In other words, 
regions with more industrial lands and less open space generate fewer 
trips in both periods. Prior studies found similar results (Caspi and 
Noland, 2019; Shen et al., 2018; Sun et al., 2018). The residential lands, 
however, present opposite signs between the two periods. A negative 
relationship with bike-sharing usage is observed during regular periods, 
but the sign flips to positive during the pandemic. Findings in Model III 
further ascertain the above arguments. Results show that the proportion 
of open space and residential lands are significantly positively related to 
relative change, indicating smaller relative decrease in bike-sharing usage 

Fig. 6. Temporal evolution of relative volume of different modes of transport across the pandemic, from January 1st, 2020 to July 31st, 2020, compared to a baseline 
volume on January 13th, 2020. 

Table 4 
Monthly relative volume of different modes of transport from January 1st, 2020 
to July 31st, 2020, compared to the baseline volume on January 13th, 2020.  

Month All travel Bike-sharing Driving Transit Walking 

1 0.992 0.753 1.050 0.993 1.070 
2 1.105 0.775 1.137 1.044 1.248 
3 0.815 0.732 0.821 0.599 0.843 
4 0.514 0.452 0.573 0.213 0.439 
5 0.639 1.031 0.840 0.263 0.654 
6 0.788 1.828 1.180 0.393 1.014 
7 0.825 2.840 1.375 0.458 1.316 

Note: The reason that the relative ratio of bike-sharing usage is lower than 1 in 
January is that the baseline date, January 13th, 2020, is Monday and bike- 
sharing is more popular on weekdays during regular periods (see Fig. 3 (b)). 
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in areas with higher proportions of open space and residential lands. Such 
findings are intuitive since stay-at-home orders restrict individual 
movement scope to their home, contributing to the increase in human 
movement near residential lands. Also, since more bike-sharing trips are 
generated for exercise/leisure during the pandemic, the open spaces, 
like parks and green spaces, would become the more attractive spots for 
riders. 

For transportation features, road density and bike route density both 
present significant positive signs in Model I and II, which is consistent 
with prior studies (Chen et al., 2018; Noland et al., 2016; Wang and 
Chen, 2020). The transit ridership shows a slightly significant positive 
relationship in Model I, and such a relationship attenuates during the 
pandemic. Meanwhile, a significant positive relationship is observed in 
Model III. In sum, regions with higher transit ridership generate more bike- 
sharing trips during regular periods and decrease relatively less during the 
pandemic. One explanation is that the relationship between bike-sharing 
and transit has changed from complement (Faghih-Imani and Eluru, 
2015) to substitute (Pase et al., 2020) due to the pandemic’s outbreak. 
During regular periods, a complementary relationship indicates bike- 
sharing pickups positively correlate with transit ridership. During the 
pandemic, the high risk of being infected in the public environment may 
push some transit passengers to shift to bike-sharing. Thus, a lower 
relative decrease in bike-sharing usage is observed in areas with more 
transit ridership. 

Among station characteristics, the distance to the nearest bike- 
sharing station presents a significant negative relationship in Model I. 
However, such a relationship disappears in Model II. Meanwhile, a 
significant positive relationship is observed in Model III. Together, these 
findings indicate that compact bike-sharing station clusters generate more 

trips during regular periods but suffer more relative loss during the pandemic. 
We argue this may because stations are distributed more compact near 
the city center but more scattered in suburban areas, while regions near 
the city center present a noticeable “more generation more loss” pattern 
in travel demand, as shown in Figs. 4 and 5. 

Similarly, the coefficient of the number of docks in the bike-sharing 
station shows a significant positive sign in Model I and II and shows a 
significant negative sign in Model III. Such difference suggests larger 
stations generate more trips in both periods but suffer a more significant 
relative trip loss during the pandemic. It is intuitive since larger stations 
imply more available bikes and are always located in areas with higher 
potential travel demand (Faghih-Imani and Eluru, 2015, 2016). It is 
worth mentioning we should be careful to make any causal inference 
here considering the endogeneity bias when modeling the relationship 
between shared-bike trips and station characteristics (Faghih-Imani and 
Eluru, 2016; Wang and Chen, 2020). Finally, for the number of COVID- 
19 cases, only a significant negative relationship is observed in Model II, 
meaning areas with more cases generate fewer trips during the pandemic. 
The panic effect may explain the negative sign to some extent, as resi-
dents would perceive higher risk of contagion in areas with more cases. 
In addition, considering people of non-white and with low-income are 
disproportionately susceptible to COVID-19 infections due to the higher 
proportions of occupying frontline essential services and the prevalence 
of comorbidities (Hooper et al., 2020), the negative correlation here 
might also be explained by the fact that bike-sharing is relatively less 
used by those underprivileged populations. 

Table 5 
Results of cross-sectional analysis.    

I. Average Daily Pickups (2019) II. Average Daily Pickups (2020) III. Cumulative relative change (by 
2020/07/31) b  

Parametric coefficients   
Coeff. St.d. 

Err. 
P-value Coeff. St.d. Err. P-value Coeff. St.d. 

Err. 
P-value  

(Intercept) 1.425 0.332 0.000 *** 1.412 0.347 0.000 *** − 0.192 0.203 0.346  
Socio-demographic Prop. of Male − 0.209 0.372 0.574  − 0.183 0.377 0.627  0.234 0.225 0.300  

Prop. of Age_25_40 0.091 0.218 0.677  0.134 0.224 0.551  0.120 0.134 0.368  
Prop. of White 0.549 0.192 0.004 ** 0.513 0.202 0.011 * − 0.281 0.107 0.009 ** 
Prop. of Asian 0.258 0.241 0.284  − 0.071 0.257 0.783  − 0.256 0.125 0.041 * 
Median Income 0.001 0.001 0.099 . − 0.001 0.001 0.177  − 0.001 0.001 0.052 . 
Prop. of College Degree 0.990 0.228 0.000 *** 0.767 0.240 0.001 ** − 0.077 0.136 0.572  
Prop. of Utilities Jobs − 0.066 0.114 0.560  0.002 0.114 0.983  0.036 0.067 0.588  
Prop. of Goods-Product Jobs − 0.161 0.171 0.347  0.025 0.172 0.886  0.081 0.094 0.388  
Population Density 0.003 0.001 0.031 * 0.004 0.001 0.001 *** 0.001 0.001 0.114  
Job Density 0.002 0.006 0.716  − 0.008 0.006 0.161  − 0.003 0.004 0.470  
Prop. of Car − 0.825 0.218 0.000 *** − 0.661 0.224 0.003 ** 0.097 0.127 0.446  

Land use Prop. of Commercial 0.313 0.429 0.465  − 0.050 0.454 0.913  − 0.134 0.267 0.616  
Prop. of Industrial − 1.517 0.629 0.016 * − 1.380 0.669 0.039 * 0.107 0.352 0.762  
Prop. of Institutional − 0.551 0.338 0.103  − 0.158 0.357 0.658  0.086 0.202 0.671  
Prop. of Open space 0.538 0.288 0.062 . 1.185 0.303 0.000 *** 0.603 0.174 0.001 *** 
Prop. of Residential − 0.659 0.348 0.058 . 0.714 0.375 0.057 . 0.765 0.211 0.000 *** 

Transportation 
features 

Road Density 0.005 0.002 0.027 * 0.004 0.002 0.089 . 0.000 0.001 0.786  
Bike Route Density 0.028 0.013 0.028 * 0.035 0.013 0.008 ** 0.004 0.008 0.622  
Transit Ridership 0.004 0.002 0.015 * − 0.001 0.002 0.656  0.002 0.001 0.061 . 

Station characteristics Distance to Nearest Bike 
Station 

− 0.810 0.345 0.019 * 0.428 0.355 0.229  0.623 0.191 0.001 ** 

Capacity 0.046 0.003 0.000 *** 0.025 0.003 0.000 *** − 0.010 0.002 0.000 *** 
COVID-19 features No. of Cases     − 0.876 0.160 0.000 *** − 0.072 0.080 0.370   

Smooth terms   
e.d.f Chi.sq P-value e.d.f Chi.sq P-value e.d.f F P-value  

ti (latitude, longitude) 6.178 72.448 0.000 *** 9.481 122.953 0.000 *** 4.276 1.032 0.354   
Model fit  
R-sq. (adj) 0.527 0.610 0.400  
Deviance explained 81.10% 74.80% 43.40% 

a. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. Variables with P-values smaller than 0.1 are considered as statistically significant. 
b. Since the cumulative relative change value is negative, a negative coefficient indicates that a larger independent variable leads to a lower (more negative) relative 
change, i.e., a greater decrease. 
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4.4. Results of nonlinear interactions 

Results of nonlinear interactions between time and independent 
variables with the cumulative relative change as the dependent variable 
are shown in Fig. 7. For each subplot, the horizontal axis represents the 
time index measured in the day, while the vertical axis represents the 
independent variable of interest. The contour and heatmap represent the 
interaction (i.e., the effects on cumulative relative change) given the 
independent variable and time. Compared with cross-sectional analysis, 
longitudinal models can capture more time-varying information 
regarding the relationship of interest in the study period. In particular, 
model III is to fit the cross-section of Fig. 5 on July 31st, 2020. Thus, we 
can find high consistency between results in Model III and the cross- 
sectional pattern on July 31st, 2020 in Fig. 5. 

Horizontally, all subfigures present a trend varying like “light brown 
(Time Index < − 10) - dark brown (Time Index ∈ [− 10,10]) - light blue 
(Time Index ∈ [10,40]))) - dark blue (Time Index ∈ [40,120]) - light blue 
(Time Index > 120)”, which highly aligns with the temporal pattern of 
cumulative relative change shown in Fig. 2. This indicates that GAMMs 
successfully capture the nonlinear temporal patterns of the cumulative 
relative change in bike-sharing usage. Vertically, different subfigures 
present different trends, and the trend also varies across different pe-
riods. In particular, we are interested in changing patterns during the 
pre-pandemic period (Time Index ∈ [− 10,10]) and post-pandemic period 
(Time Index ∈ [40,120]), as well as the time when the cycling mobility 
starts to drop and recover. The take-away information is summarized in 
Table 6. 

For socio-demographics, the proportion of white residents present a 
similar pattern with the proportion of Asian. However, the latter shows a 
slightly less relative decrease and a more relative increase given the 
same period. Both white and Asian present an opposite pattern with 
black. Specifically, bike-sharing usage in regions with more white, more 
Asian, and less black shows less relative increase during the pre- 
pandemic period and more relative decrease during the post-pandemic 
period. Such regions also present an earlier start-to-drop time and a 
later start-to-recover time. In a nutshell, regions with more white and Asian 
residents become less dependent on bike-sharing during the pandemic, while 
regions with more black residents become more dependent. However, the 
median household income presents a slightly different pattern like a 
“flash mob”: bike-sharing usage in high-income areas presents greater rela-
tive increase during the pre-pandemic period and then reverses to greater 
relative decrease during the post-pandemic period. Similar findings are also 
documented in prior studies (Weill et al., 2020) being describing as “a 
reversal in the ordering of social distancing by income”. Many high-income 
regions are near the city center or commercial lands, explaining the pre- 
pandemic sharp increase in high-income areas. People may come in 
great numbers to these areas to stock up goods for possible lockdown 
before the pandemic. Thus, the sharp increase in pickups may not be 
solely induced by residents but also by external visitors (Pase et al., 
2020). 

Regarding land use, the proportion of open space and the proportion 
of residential land present similar patterns. Regions with more open 
space and residential lands present more relative increase during the 
pre-pandemic period and smaller relative decrease during the post- 
pandemic period. Such regions also present a later start-to-drop time 
and an earlier start-to-recover time. Transit ridership does not present a 
substantial relationship with the relative change before the pandemic. 
However, during the post-pandemic period, regions with more transit 
ridership exhibit smaller relative decrease in bike-sharing usage, which 
can be sourced to the newly-formed substitute relationship between 
bike-sharing and transit. 

Last, for station characteristics, stations with longer distances to the 
nearby bike-sharing station present more relative increase during the 
pre-pandemic period and present less relative decrease during the post- 
pandemic period. This indicates that isolated stations become more 
critical in the bike-sharing system under the pandemic. Stations near the 

city center and stations with more docks present more relative increase 
during the pre-pandemic period and show more relative decrease during 
the post-pandemic period (somewhat like stations located in high- 
income areas). Also, these stations present a later start-to-drop time 
and start-to-recover time. A similar phenomenon is found in bike- 
sharing systems in China, where city centers are the most impacted 
area during and shortly after the pandemic (Chai et al., 2020). 

5. Discussion, conclusion, and limitation 

Leveraging two years of daily trips in the Divvy bike-sharing system 
in Chicago and using a set of cross-sectional and longitudinal modeling, 
this study examined the spatiotemporal changing patterns of bike- 
sharing usage during the COVID-19, compared the bike-sharing evolu-
tion trends with other modes of transport, explored the socio-economic 
disparities, visualized the nonlinear temporal interactions, and quanti-
fied the underlying mechanisms. Findings show that temporal patterns 
of bike-sharing usage vary across different regions, wherein socio- 
demographics like median income and race, land use feature like open 
space and residential lands, transit ridership, and station characteristics 
like spatial compactness and station capacity play the most critical roles. 
We summarized the main conclusions as follows:  

1) By descriptive analysis of trip features, we found during the 
pandemic, the proportion of member trips vastly decreases while the 
proportion of casual trips dramatically increases. The average trip 
distance and trip duration increase, and the trip purposes change 
from “more commuting” to “more leisure”. Regarding network 
structure, we found the pandemic dramatically curtailed the strength 
of connection and contracted the complexity of the bike-sharing 
network structure.  

2) By comparing bike-sharing with different modes of transport 
including driving, walking, transit, and total travel, we noticed a 
substantial disproportion in mobility fall and rebound. Bike-sharing 
is the most robust and resilient option under the shock of the 
pandemic, with the highest recovery speed and greatest recovery 
magnitude. On the contrary, transit bears the hardest hit, losing the 
most travels and recovering remarkably tardily.  

3) By modeling the absolute average pickups in regular periods (i.e., 
2019), we found bike-sharing is more prevalent among regions with 
more white, high-income, and educated residents, with higher pop-
ulation density, and with fewer residents commuting by private cars. 
Industrial land presents a negative relationship with bike-sharing 
usage, while open space presents a positive relationship. Higher 
road density, denser bike routes, and greater transit ridership all 
positively correlate with bike-sharing usage. For station character-
istics, compact spatial distribution and large station capacity both 
help promote bike-sharing usage.  

4) By analyzing the cumulative relative change in bike-sharing usage 
across the pandemic, we documented the average trend follows an 
“increase-decrease-rebound” pattern. By modeling, we found regions 
with more white, Asian, and less black residents become less 
dependent on bike-sharing during the pandemic, starting to drop 
earlier, decreasing relatively more, and starting to recover later. We 
also found open space and residential lands present less relative 
decrease and earlier start-to-recover time. As for transit, we found 
the relationship between bike-sharing and transit shifts from com-
plement to substitute during the pandemic. In addition, we found 
stations near the city center, with more docks, or located in high- 
income areas present a “flash mob” pattern: bike-sharing usage in 
these stations present more relative increase when the pandemic is 
imminent but shift to more relative decrease during the pandemic. 
These stations also have a delayed start-to-drop and start-to-recover 
time. Last, we found isolated stations become more important in the 
bike-sharing system under the pandemic, showing more relative pre- 
pandemic increase and less relative post-pandemic decrease. 
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Fig. 7. Nonlinear interactions between time index and different independent variables of interest regarding the cumulative relative changes. 
Note: a) All models have controlled weather conditions (temperature and rainfall), holidays, time-series seasonality (weekly and monthly), and other linear fixed 
effects except for the variable of interest. b) Only variables with statistically significant interaction with time index (i.e. P-value <0.1) are plotted. c) The horizontal 
axis varies from February 1st, 2020 to July 31st, 2020. March 11st, 2020 is set as Day 0, and days with negative indexes represent days earlier than March 11st, 2020. 
d) For some comparable pairs of variables, i.e., Prop. of White vs. Prop. of Asian vs. Prop. of Black, Prop. of Openspace vs. Prop. of Residential, the scale of color bar is set 
as the same. 
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Findings provide a timely understanding of bike-sharing usage 
trends and offer suggestions on how different stakeholders should 
respond to the unprecedented change. First, the local government 
should consider the vital role of bike-sharing in the transportation sys-
tem during the pandemic (Pase et al., 2020). While public trans-
portations are the signature of an efficient urban transport system, 
alternative transport modes, such as bikes, are required as a more 
feasible and robust solution to maintain social distancing. During a 
pandemic, the fear of overcrowding is worsened by the risk of contagion. 
Bike-sharing can play the role of ameliorating factors during disruptive 
events that satisfy urban residents’ travel needs. Also, cycling can serve 
as an excellent outdoor exercise for individuals to keep fit and healthy, 
which is particularly important to protect themselves from the virus. 
Moreover, it provides a lifestyle change option for the more environ-
mentally sustainable city facing climate change after the pandemic. 
Thus, the local government should encourage those who still need to 
travel to consider use bike-sharing rather than transit if possible. For 
those staying at home for a long time, cycling regularly also helps them 
reduce the risk of health problems associated with a sedentary lifestyle 
and boost their immune system against the COVID-19. Second, this 
paper suggests a spatial disparity in bike-sharing demand during the 
pandemic, which would help bike-sharing operators adjust their services 
better and ensure people’s cycling needs are well served. We suggest 
adjusting the number of shared bikes based on socio-economic charac-
teristics and spatial needs. One example could be relocating bikes from 
regions with a lower concentration of vulnerable people to those areas 
with more vulnerable people. Such adjustment not only helps bike- 
sharing programs remain a higher turnover rate but also help more 
people away from the overcrowding transit, keep social distancing, and 
finally contain the spread of the virus. It is also worth mention that bike- 
sharing still belongs to a mode of public transport. Considering the 
virus’s aerosol and surface stability (Van Doremalen et al., 2020), it is 
necessary to institute additional cleaning and disinfection procedures 
consistently, correctly, and more frequently to protect the bike-sharing 
riders. Lastly, the deep socio-economic inequities deserve more atten-
tion. This study adds to the growing body of evidence suggesting that the 
burden of the pandemic is spread unevenly across demographic groups 
(Bliss et al., 2020; Bonaccorsi et al., 2020; Brough et al., 2020; De Vos, 
2020; Hu and Chen, 2021; Pase et al., 2020; Sy et al., 2020; Wilbur et al., 
2020). The state and local agencies should focus more on underserved 
and vulnerable populations to address challenges in following the stay- 
at-home orders and the new social-distancing norm. For example, the 
local government should enhance the wage of essential jobs, allocate 
more subsidies to essential workers, and estimate the changing travel 
demand in a timely matter to better allocate resources. 

Several limitations are recognized. First, this study mixes casual trips 

and member trips when building models. Considering the difference in 
travel behavior and travel purpose between bike-sharing casual and 
member (Wang and Lindsey, 2019), it would be interesting to analyze 
the trips separated by user types. Second, the potential endogeneity of 
bike-sharing station characteristics is likely to over-estimate the impact 
of bike-sharing infrastructure in statistical inference. Further studies 
should consider employing some specific models like Two-Stage least 
squares (2SLS) regression to address the endogeneity (Faghih-Imani and 
Eluru, 2016). Last, findings from this study are region-specific since only 
one city is analyzed. The verification for more cases is warranted to test 
the generalizability of the findings. 
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Table 6 
Summary of nonlinear interactions.  

Independent 
Variable 

Pre-pandemic 
(Time Index ∈
[− 10,10]) 

Time 
Start to 
Drop 

Post-pandemic 
(Time Index ∈
[40,120]) 

Time Start 
to Recovery 

Prop. of White Less increase Earlier More decrease Later 
Prop. of Asian Less increase Earlier More decrease Later 
Prop. of Black More increase Later Less decrease Earlier 
Median Income More increase Later More decrease Later 
Prop. of Open 

space 
More increase Later Less decrease Earlier 

Prop. of 
Residential 

More increase Later Less decrease Earlier 

Transit 
Ridership 

– – Less decrease Earlier 

Distance to 
Nearest Bike 
Station 

More increase Later Less decrease Earlier 

Distance to City 
Center 

Less increase Earlier Less decrease Earlier 

Capacity More increase Later More decrease Later  
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