

// Bike Share Ridership Modeling + System Planning //

Sam Frommer // Senior Planner + Designer // Sam Schwartz Consulting, LLC // sfrommer@samschwartz.com

// Bike Share System Planning

Planning Principles

- a. System Goals
 - i. Guides decision making and helps to balance competing interests
- b. Connectivity
 - i. Contiguous system
 - ii. No fingers, no islands, no rough edges
- c. Station density
 - i. Set a minimum, average, and maximum density
- d. Station Sizing
 - i. Adjust as you go

// Heat Mapping

Used to help define service area in accordance with system goals This is not ridership modeling!

Boston

- 5. Minneapolis (8. New York City)

2. Chicago

6. Toronto

- 3. Columbus
- 7. Washington DC

4. Denver

(1) buffer each station 1/4-mile

(2) remove waterways

(3) remove gaps

- 1. Population
- 2. Employment
- 3. Stations

- 1. Population
- 2. Employment
- 3. Stations

- 1. Population
- 2. Employment
- 3. Stations

// Modeling Station-Level Ridership

Dependent variable = weekday trips Used quarter-mile walkshed

	Demographic
1	Population
2	Employment
3	Ped/bike commuter (%)
4	Cars available to the household (%)
	Geographic
5	Proximity to the Lake Trail
6	Proximity to CBD
7	Colleges
8	Number of storefront businesses (retail, food, drink)
9	Hotel rooms
10	Tourist attractions
11	Bus activity (average weekday boarding)
12	Rail activity (El and Metra, average weekday)
	System
13	Station count

Sam Schwartz Consulting, LLC

// Modeling Station-Level Ridership

Used model output to help determine station size

	Demographic
1	Population
2	Employment
3	Ped/bike commuter (%)
4	Cars available to the household (%)
	Geographic
5	Proximity to the Lake Trail
6	Proximity to CBD
7	Colleges
8	Number of storefront businesses (retail, food, drink)
9	Hotel rooms
10	Tourist attractions
11	Bus activity (average weekday boarding)
12	Rail activity (El and Metra, average weekday)
	System
13	Station count
	Com Cohresonte Consulting

Sam Schwartz Consulting, LLC

// Lessons Learned

- Heat mapping vs. modeling
- 2. Need a range of explanatory factors
- 3. Factors
 - a. Connectivity
 - b. Systemwide: pop, jobs, stations
 - c. Station-Level: stations, pop, jobs, Lake Trail
 - d. Other factors have a local effect
- 4. We can use ridership forecasting to help make informed decisions about the effects of planning choices

